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Abstract

Mitochondria have emerged as the major regulatory platform responsible for coordination of 

numerous metabolic reactions as well as cell death processes, whereby the execution of intrinsic 

apoptosis includes the production of reactive oxygen species fueling oxidation of cardiolipin (CL) 

catalyzed by cytochrome (cyt) c. As this oxidation occurs within the peroxidase complex of cyt c 

with CL, the latter represents a promising target for the discovery and design of drugs with anti-

apoptotic mechanism of action. In this work, we designed and synthesized a new group of 

mitochondria-targeted imidazole-substituted analogues of stearic acid TPP-n-ISA with different 

positions of the attached imidazole group on the fatty acid (n=6, 8, 10, 13 and 14). By using a 

combination of absorption spectroscopy and EPR protocols (continuous wave electron 

paramagnetic resonance, and electron spin echo envelope modulation) we demonstrated that TPP-

n-ISA indeed were able to potently suppress CL induced structural re-arrangements in cyt c 
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paving the way to its peroxidase competence. TPP-n-ISA analogues preserved the low spin hexa-

coordinated heme iron state in cyt c/CL complexes whereby TPP-6-ISA displayed a significantly 

more effective preservation pattern than TPP-14-ISA. Elucidation of these intermolecular 

stabilization mechanisms of cyt c identified TPP-6-ISA as an effective inhibitor of the peroxidase 

function of cyt c/CL complexes with a significant anti-apoptotic potential realized in mouse 

embryonic cells exposed to ionizing irradiation. These experimental findings were detailed and 

supported by all atom molecular dynamics simulations. Based on the experimental data and 

computations predictions, we identified TPP-6-ISA as a candidate drug with optimized anti-

apoptotic potency.
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Introduction

Mitochondria are essential for bioenergetics, coordination of cell metabolism through 

signaling and cells life and death decisions. Production of reactive oxygen species (ROS) [1, 

2] and peroxidation of a mitochondria-specific phospholipid, cardiolipin (CL) are essential 

events in the execution of the mitochondrial stage of the intrinsic apoptotic program [3–5]. 

These mitochondrial events develop as delayed responses commonly occurring hours after 

the exposure to chemical or physical pro-apoptotic factors, and thus offer a therapeutic 

window for protective and mitigative modalities [6–10].

During the initial stages of apoptosis, translocation of CL from the inner to the outer 

mitochondrial membrane [11] allows its interaction with an intermembrane space hemo-

protein, cytochrome (cyt) c. In the resulting complex, cyt c loses its electron-transporting 

function but gains a peroxidase activity towards polyunsaturated species of CL [3, 12]. 

Oxidation of CL is essential for further transduction of apoptotic signals by facilitating 

detachment of cyt c from the mitochondrial membrane and formation of the mitochondrial 

permeability transition pore that leads to the release of pro-apoptotic factors from 

mitochondria into the cytosol [13]. This suggests that peroxidase activity of cyt c/CL 

complexes represents a promising target for anti-apoptotic drug discovery.

Normally, cyt c has a very low peroxidase activity due to the stable hexacoordinate structure 

of the heme iron [14, 15]. The distal ligand, Met80, is located only 2.5 Å away from Fe, thus 

precluding access to the heme in the native protein by hydrogen peroxide (H2O2) or other 

peroxides [3]. Upon binding and partial unfolding of cyt c by CL, Met80 moves away from 

the heme Fe-atom and releases the sixth iron coordination bond, resulting in enhanced 

access of the heme catalytic site to small molecules like H2O2. One can assume that 

“locking” of the heme-iron coordination bond with a strong ligand delivered through the 

hydrophobic channel into immediate proximity of the heme catalytic site would block the 

peroxidase activity, inhibit CL peroxidation and prevent the progressions of apoptosis [16, 

17]. As a proof of principle, we designed and synthesized imidazole-substituted derivatives 
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of stearic and oleic acids in which the imidazole group was attached to the 12th carbon. The 

carboxyl group of these derivatives likely interacted with one of the critical Lys residues of 

cyt c, while the imidazole moiety on the acyl chain - protruding into the hydrophobic pocket 

- appeared to interact with the heme iron to lock the catalytic site and form a high affinity 

complex [6]. In this complex, H2O2 has no or little access to the heme catalytic site. Specific 

mitochondrial accumulation of 12-imidazole-substituted stearic acid (ISA) has been 

achieved by conjugating it with a lipophilic cation, triphenylphosphonium (TPP) [6, 18]. In 

line with the prediction, TPP-12-ISA suppressed peroxidase activity of cyt c/CL complexes 

with a prototypical phenolic substrate, Amplex Red, inhibited oxidation of bound TLCL, 

and, importantly, prevented irradiation-induced injury in vitro and in vivo [6]. However, 

molecular mechanisms and structural optimization of the inhibitory action of TPP-ISA on 

peroxidase activity or anti-apoptotic propensities, particularly with regards to the closest 

positioning of the imidazole functionality to heme-iron, have not been performed. In the 

current study, we designed and synthesized a group of TPP-ISA homologues with 

alternating position of the imidazole group at 6, 8, 10, 13 and 14th carbons, and 

experimentally tested their efficiency of interaction with cyt c heme-iron and anti-peroxidase 

inhibitory activity in model biochemical systems as well as their anti-apoptotic potential 

after exposure of mouse embryonic cells (MECs) to γ-irradiation. The proposed molecular 

mechanisms of inhibitory action of different TPP-ISA homologues were also studied by 

employing computational modeling.

Materials and Methods

Reagents

Horse heart cyt c (type C-7752, >95%), diethylenetriaminepentaacetic acid (DTPA), H2O2, 

and fetal bovine serum (FBS) were purchased from Sigma-Aldrich (St. Louis, MO). 1,2-

Dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,1′,2,2′-tetraoleoyl-cardiolipin (TOCL) 

were purchased from Avanti Polar Lipids (Alabaster, AL). Amplex Red (N-acetyl-3,7-

dihydroxyphenoxazine) was obtained from Life Technologies (Carlsbad, CA).

Preparation of TPP-conjugated Imidazole Fatty Acids

The initial syntheses of imidazole fatty acids were performed using the naturally occurring 

hydroxy-fatty acid, ricinoleic acid, and the reduced product 12-hydroxy-stearic acid [6]. The 

lack of abundant other naturally occurring hydroxy-acids meant that these materials had to 

be prepared from short chain precursors. TPP-6-ISA and TPP-8-ISA were synthesized from 

unsymmetrical ozonolysis of cyclohexene and cyclooctene respectively [19, 20]. TPP-10-

ISA can, in theory, be synthesized by the unsymmetrical ozonolysis of cyclodecene, but this 

starting material is very expensive. Rather, we started from 1,10-decanediol which was 

selectively monobenzylated [21], oxidized to the aldehyde with pyridinium chlorochromate 

in dichloromethane [22], chain extended with a Grignard reagent from 8-bromooctane, 

mesylated and substituted with imidazole as previously described [6]. Following 

debenzylation, oxidation provided the 10-imidazole stearic acid that was then conjugated as 

an ester with (3-hydroxypropyl)-triphenylphosphonium bromide as previously described. 

Full synthetic details are found in the supplementary materials. TPP-13-ISA was prepared 

starting with the monobromination of 1,12-dodecandiol, chain extension to the 17-
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bromoheptadecan-6-ol, and one-carbon homologation with sodium cyanide. Imidazole 

substitution of the mesylated 13-hydroxyoctadecanenitrile proceeded as with other 

compounds, and finally the cyano-group was hydrolyzed to the carboxylic acid, and 

conjugated to (3-hydroxypropyl)-triphenylphosphonium bromide. TPP-14-ISA was also 

prepared from the 12-bromododecanol used to make TPP-13-ISA. This was chain extended 

by two carbons using first malonate chemistry, then oxidized to an aldehyde and chain 

extended by four carbons using a butyl Grignard reagent. The product diethyl 2-(12-

hydroxyhexadecyl) malonate was substituted with imidazole at the hydroxyl group as usual, 

decarboxylated and conjugated with (3-hydroxypropyl)-triphenylphosphonium bromide.

Determining purity and concentration of TPP-ISAs

TPP-n-ISAs (all m/z 653) were assessed for purity and concentration by selected ion 

monitoring (SRM) in a LCQ-Duo ion trap mass spectrometer. Chromatography was 

performed on an Eclipse XDB reverse phase C18 column (4.6mm×15 cm, Agilent 

Technologies) using an isocratic solvent system consisting of 

acetonitrile:water:triethylamine:acetic acid (900:100:5: 5, v/v/v/v) and a flow rate of 0.4 ml/

min. The transition measured was from m/z 653 to m/z 303 (TPP-ISA to TPP-propyl moiety 

– water) within a 0.5 Da window. Instrument conditions were as follows: spray voltage, 4.5 

kV, positive mode; sheath gas 30; capillary temperature, 250°C; tube lens, 20; capillary 

voltage, 26. The instrument was tuned for the appropriate parent ion and all parameters were 

optimized to maximize the transition during the SRM including tuning under appropriate 

flow conditions. The various analogs eluted as a single peak.

Liposomes Preparation

Small unilamellar liposomes were prepared from DOPC and TOCL (1:1 ratio) by sonication 

in 20 mM HEPES buffer (pH 7.4) with 100 μM DTPA.

Absorption Spectroscopy

Optical spectra were recorded in 20 mM HEPES buffer (pH 7.4) using UV160U 

spectrophotometer (Shimadzu, Japan). For quantitative assessment of the changes in the 

formation of high-spin iron we used the height of peak at ca. 620 nm calculated by 

subtraction of the absorbance reading at 675 nm from the absorbance reading at 620 nm. 

The final concentration of cyt c in the experiments was 75 μM. In order to minimize the 

interference of light scattering, the baseline was subtracted from each individual spectrum 

before obtaining the differential spectra.

Electron Paramagnetic Resonance Spectroscopy

Electron paramagnetic resonance (EPR) experiments were carried out on a Bruker ElexSys 

E580 FT/CW spectrometer equipped with a Bruker ER4118X-MS3 (for continuous wave, 

CW) or ER4118X-MD5 (for electron spin echo envelope modulation, ESEEM) resonator. 

The temperature was controlled by an Oxford ITC503 temperature controller and an Oxford 

CF935 dynamic continuous flow cryostat connected to an Oxford LLT 650 low-loss transfer 

tube.
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For CW-EPR experiments, the sample was transferred into a quartz tube of inner diameter 1 

mm. All samples were flash frozen using liquefied methylacetylene-propadiene propane. 

Then, the samples were inserted into the samples cavity that was pre-cooled to 10 K for CW 

experiments. The experiments were conducted at X-band at a microwave frequency of ~9.69 

GHz. A time constant of 10.24 ms, a conversion time of 327.68 ms, modulation amplitude 

of 10 G, a modulation frequency of 100 KHz, and a microwave power of 0.1993 mW were 

the other instrument parameters used for the CW experiment.

For three-pulse ESEEM experiments 150 μL of the sample was transferred into a quartz tube 

of inner diameter 3 mm. After flash freezing with liquefied methylacetylene-propadiene 

propane, the samples were inserted into the sample cavity that was pre-cooled to 4.2 K. The 

ESEEM experiments were conducted using a π/2-τ-π/2- T-π/2-echo pulse sequence with a 

π/2 pulse width of 16 ns. The separation between the first two pulses τ, was set at 144 ns, 

and the second pulse separation, T, was varied from 288 ns with a step size of 16 ns with the 

magnetic field strength fixed at the maximum echo intensity around 3340 G. A four-step 

phase cycling was employed to eliminate unwanted echoes [23, 24]. The raw data were 

phase corrected and the real part was selected. After the baseline correction, the data were 

fast Fourier-transformed. Then the final spectra were obtained as the magnitude of the 

Fourier transforms.

Assessment of Peroxidase Activity of TOCL/cyt c Complexes

Assessments of cyt c peroxidase activity were performed in 20 mM HEPES buffer (pH 7.4) 

with 100 μM DTPA by measuring fluorescence of resorufin (oxidation product of Amplex 

Red) (λex/em =570/585 nm). Cyt c (1 μM) was first incubated with DOPC/TOCL liposomes 

and TPP-ISA derivatives for 10 min. After that, Amplex Red (50 μM final) and H2O2 (50 

μM final) were added to the sample and incubated for an additional 20 min. The reaction 

rate was linear in the entire time interval. Resorufin fluorescence was determined using a 

Fusion-α plate reader (Perkin Elmer, Waltham, MA).

Computational Modeling Studies

All atom simulations were performed using NAMD software [25] and CHARMM force 

field [26]. Heme parameters were obtained from Autenrieth [27] and inhibitor parameters 

were based on lipid parameters [28]. Systems were prepared using VMD plugins 

Molefacture, Solvate and AutoIonize. Protein-ligand complex was placed in a solvent box 

with 6 Å (or 12 Å along each dimention). ShakeH algorithm was used to constrain bonds 

with hydrogen atoms in order to increase integration time step to 2 fs. Full electrostatic 

calculations were performed every other time step, and other non-bonded forces were 

calculated at every time step. Systems were equilibrated for 120 ps with positional harmonic 

constraints on non-hydrogen atoms with a force constant of 0.5 kcal/mol. System 

temperature was gradually raised from 100 K to 300 K in the first 40 ps of equilibration. 

Simulations were performed at 300 K and 1 ATM. Temperature and pressure were 

controlled using Langevin dynamics and Langevin piston implementations of NAMD. 

Durations of simulations are summarized in Table 1. System coordinates were saved at 

every 4 ps. Clustering analysis was performed with a 2.5 Å RMSD cutoff using VMD. 

Solvent accessible surface area (SASA) calculations were performed using Chimera [29]. 
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Results were analyzed using VMD and ProDy [30], and VMD was used for movie 

generation [31].

Cell Culture and γ-irradiation Exposure

Mouse embryonic cells (courtesy of Dr. X. Wang, University of Texas, Dallas) were 

cultured in DMEM supplemented with 15% FBS, 25 mM HEPES, 50 mg/L uridine, 110 

mg/L pyruvate, 2 mM glutamine, 1 × nonessential amino acids, 50 μM β-mercaptoethanol, 

0.5 × 106 U/L mouse leukemia inhibitory factor, 100 U/L penicillin, and 100 mg/L 

streptomycin in a humidified atmosphere of 5% CO2/95% air at 37°C. For radiation 

exposure, cells were γ-irradiated (10 Gy) using a Shepherd model 143-45A irradiator (J. L. 

Shepherd & Associates, CA) at a dose rate of ~4 Gy/min. TPP-ISA derivatives were added 

to cells 30-min after radiation exposure. Cells were collected for further analysis after 48 

hours post-radiation incubation.

Apoptosis Analysis

Phosphatidylserine (PS) externalization—At the end of incubation, adherent cells 

were trypsinized and pooled with cells that had already been detached. The externalization 

of PS was determined with flow cytometry using an Annexin-V-FITC/Propidium iodide (PI) 

kit (Biovision, Mountain View, CA). Cell debris as represented by distinct low forward and 

side scatter were gated out for analysis. Ten thousand events were collected on a FACScanto 

II flow cytometer (Becton-Dickinson, Ruther-ford, NJ) equipped with Diva software. 

Percentages of Annexin V-positive cells were calculated by combining Annexin V+/PI− 

(early apoptotic) and Annexin V+/PI+ (late apoptotic or necrotic) cells.

Caspase-3/7 activation—The caspase-3/7 activity was measured using a luminescence 

Caspase Glo-3/7 assay kit (Promega, Madison, WI) according to the manufacturer’s 

instruction.

Statistical Analysis

Data are expressed as means ± standard deviation of at least triplicate determinations. 

Statistical analysis was performed by either paired or unpaired Student’s t-test. Differences 

were considered significant at p < 0.05.

Results

Effect of TPP-ISA Derivatives on Fe-Met80 Coordination Bond of cyt c/CL Complexes

Upon binding of cyt c with CL, its sixth coordination bond (Fe-Met80) is disrupted and the 

cyt c/CL complex is activated to a peroxidase [3]. Assuming that the imidazole group in 

mitochondria-targeted TPP-ISA can substitute for Met80 and change the heme-iron 

coordination in cyt c [6], a collection of TPP-n-ISA derivatives, with the imidazole group on 

various positions (n= 6, 8, 10, 13, 14), was designed and synthesized (Fig. 1). To 

experimentally characterize the interactions of TPP-ISA derivatives with cyt c – changes in 

heme-iron coordination and high-spin and low-spin iron states, we employed two 

independent techniques as sources of essential and complementary information: i) electronic 

absorption spectroscopy [32–35], and ii) low temperature liquid-He EPR spectroscopy.
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Absorption spectroscopy—The presence of increasing amounts of TOCL resulted in 

loss of absorbance band at 695 nm (indicating the disruption or weakening of the methionine 

sulphurheme iron coordination, formation of a new relatively weak band at ca. 620 nm 

(attributed to the loss of the interaction of heme iron with its sixth ligand), a slight intensity 

increase at ca. 495 nm, and a more-pronounced shoulder at ca. 560 nm (Fig. 2A). The 

differential absorbance spectra created by subtracting spectra of cyt c from spectra of cyt c 

incubated with TOCL demonstrated positive peaks at 480–495 nm and 610–625 nm 

accompanied by a clear trough at ~700 nm (Fig. 2B insert). Intensity of these peaks 

increased proportionally to the ratio of cyt c/TOCL (Fig. 2B). These changes indicated the 

formation of high-spin iron, accompanied by the breakage of the Fe- Met80 bond. Addition 

of TPP-n-ISAs (n = 6, 8, 12, and 13) to cyt c/TOCL complex significantly decreased the 

intensity of bands at ca. 620 nm (Fig. 2C), suggesting the involvement of the imidazole 

moiety in liganding of heme iron. Importantly, the effect was increased as the imidazole 

moiety moved to a position on the chain closer to the carboxylic acid group (Fig. 2C). At a 

TPP-n-ISA/cyt c ratio of 4:1, the formation of high spin iron in the presence of TPP-6-ISA 

was significantly lower than that of TPP-12-ISA (~35% vs ~55%, p < 0.05).

EPR spectroscopy—To obtain better insights into the nature of TPP-n-ISAs interactions 

with cyt c and Fe-Met80 coordination, continuous wave EPR spectroscopy was utilized. At 

physiological pH, cyt c shows two well resolved low spin heme iron signals around g ~3.05 

and g ~ 2.23 [36]. The addition of TPP-n-ISA to cyt c did not change the spectra [6], as 

shown in figure 3. However, upon the addition of TPP-n-ISA to cyt c/TOCL complex, EPR 

spectra revealed the appearance of a new low spin species, with g ~ 2.98 and g~2.27. These 

new signals are indicative of Imidazole/His coordination of heme iron [6, 36, 37].

In order to understand details of changes at the low spin heme iron center, ESEEM 

experiments were conducted. In ESEEM spectroscopy the interactions between the electron 

spin and the nuclear spins in the immediate environment are documented [38]. All the 

ESEEM experiments were conducted at the field of the low spin signal at g~2.27. Figure 4 

shows the ESEEM spectra for cyt c complexes. The peak around 6.8 MHz in ESEEM 

spectra for cyt c is due to the interaction between the heme iron and the nitrogens (14N) of 

the porphyrin ring [39]. The interaction between the axially coordinated histidine nitrogen 

and the heme iron yields a peak around 5.5 MHz [39, 40]. The addition of TPP-n-ISA 

analogues to cyt c decreased the intensity of the 6.8 MHz peak. The decrease in peak 

intensity suggests that the hyperfine interaction between porphyrin-14N nuclei and the 

electron spin decreases [41] in the presence of TPP-n-ISA. The decrease in hyperfine 

interaction suggests a decrease in the delocalization of the heme-electron density [42] into 

the porphyrin ring. The data indicates a larger decrease in the porphyrin-ring electron 

density occurred in the presence of TPP-6-ISA compared to TPP-14-ISA (Fig. 4). Also, the 

peak around 5.5 MHz was no longer observed, which suggests that the TPP-n-ISA 

analogues disrupt the axial histidine coordination. Finally, the ESEEM data for TOCL/cyt c/

ISP-n-ISA complexes after the addition of H2O2 are shown in figure 5. For the TPP-6-ISA 

analogue the addition of H2O2 did not change the spectral feature significantly (Fig. 5A). 

However, for the TPP-14-ISA analogue 6.8 MHz peak was no longer present (Fig. 5B). This 

observation clearly illustrates that upon the addition of H2O2 the change in the coordination 
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environment is significant in the presence of TPP-14-ISA than in TPP-6-ISA. To more 

precisely characterize the changes in the ligands of heme-iron, we employed pulsed EPR 

technique capable to document the interactions between the electron spins and the nuclear 

spins in the intermediate environment. Experiments were performed at a longer pulse 

separation, where the lower frequencies modulations corresponding to imidazole are 

maximized [43]. As shown in figure 6, frequencies corresponding to axially coordinated 

imidazole ligands were observed clearly at longer pulse separations. However, these signals 

may arise from the bis-His heme species (heme is coordinated to His 18 and His 26 or His 

33) as has been reported [44]. Hence, further experimentation is required to reveal the 

precise interaction of the imidazole ring of the TPP-n-ISAs with the heme center.

Effect of TPP-ISA Derivatives on Peroxidase Activity of CL/cyt c Complex

As we hypothesized that accessibility of heme iron to H2O2 is a prerequisite for the 

activation of CL/Cyt c peroxidase, we further investigated the suppressive effect of TPP-n-

ISAs on the peroxidase activity of TOCL/cyt c complexes using a prototypical phenolic 

substrate, Amplex Red. All of the TPP-ISA derivatives functioned as potent inhibitors, as 

evidenced by the decreased oxidation of Amplex Red to its fluorescent product, resorufin 

(Fig. 7). At lower ratios (TPP-ISA:cyt c, 1:2 and 1:1), TPP-6-ISA and TPP-8-ISA 

demonstrated higher inhibitory effects, followed by TPP-12-ISA, TPP-13-ISA and TPP-14-

ISA. The resorufin fluorescence was decreased to ~25% in the presence of TPP-6-ISA 

(compared to ~40% in the presence of TPP-14-ISA, p < 0.05) at TPP-n-ISA/cyt c ratio of 

1:1. Expectedly, at higher ratios (5:2 and 5:1), these differences became insignificant.

Computational Modeling Studies of Interactions of TPP-ISA Derivatives with Cyt c

Based on experimental results demonstrating stronger effects of TPP-6-ISA vs TPP-14-ISA, 

additional characterization of interactions of TPP-n-ISAs with cyt c was performed by 

computer modeling. We performed nineteen simulations with a total duration of 3 μs of cyt c 

and inhibitor complexes and their free forms (Table 1) to characterize the effects of TPP, 

and the position of imidazole substitution on binding.

Partially unfolded cyt c prefers to fold quickly—As a starting conformation, we used 

the partially unfolded form of cyt c that was utilized in docking studies [6]. In this 

conformation, red foldon loop (residues 70 to 88) [45] is open and a hydrophobic pocket 

formed by the heme and red foldon is completely solvent accessible (Fig. 8A, B). We 

performed two 40 ns long ligand-free simulations to characterize the behavior of the loop in 

an aqueous environment (supplemental movies 1–2). In both simulations, the inhibitor 

binding site desolvated and the red foldon loop closed within 3 ns. This fast closing event is 

due to the high hydrophobicity of the binding pocket and is in accordance with previous 

studies showing that partial unfolding of the protein and dissociation of Met80 occurs 

specifically upon CL binding [44, 46].

TPP group has negligible effect on binding of ISA derivatives with CL/cyt c 
complex—To characterize the effect of the TPP group, we simulated 6-ISA and TPP-6-

ISA complex formed in two different binding orientations. In the initial complex 

configuration, imidazole groups coordinated the heme iron and the aliphatic chains were 
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elongated parallel to the plane formed by heme (Fig. S1). In 200 ns long simulations, the 

inhibitor and red foldon loop preferred a compact form to maximize the burial of 

hydrophobic surface (supplemental movies 2–6). Radius of gyrations of 6-ISA and TPP-6-

ISA decreased from 6.8 Å to 4.8 Å and from 9.8 Å to 6.5 Å, respectively. This transition 

took only 2 to 4 ns. Residues Ile75, Met80, Phe82, Ala83, and Ile85 of the red foldon loop 

formed interactions with the inhibitors (Table S1). In particular, Met80 and Phe82 enclosed 

the inhibitors inside the binding site upon closing of the loop. Figure 8C and 8D shows 

representative configurations for 6-ISA and TPP-6-ISA. Due to the non-specific nature of 

interactions, we observed multiple potential binding modes for these inhibitors (Fig. 8 and 

S2). Clustering analysis that excluded the TPP group showed that both inhibitors sampled 

similar configurations with comparable weights (Fig. S3), suggesting that TPP has a 

negligible effect on the binding mode of an ISA. The TPP group resided above the binding 

pocket and interacted with the solvent exposed side of heme (Fig. 8D and supplemental 

movies 5–6). We also compared the solvent accessible surface area (SASA) of free and 

bound forms of TPP group (Table 2). Upon binding of TPP-6-ISA with cyt c, SASA of TPP 

decreased by 18%, whereas SASA of ISA decreased by 78%, showing that cyt c interactions 

are dominated by hydrophobic ISA group. Similar data were obtained with other TPP-ISA 

derivatives (Table 2).

TPP-ISA with imidazole substitutions close to carboxylic group more 
effectively interact with cyt c/CL complex—To evaluate the effect of imidazole 

substitution position on binding, we performed simulations of free and bound forms of TPP-

n-ISA series for n =6, 8, 10, 12, and 14 (supplemental movie 7). SASA of bound forms were 

53% to 59% smaller than the free form of inhibitors. Longer hydrocarbon chains of 

inhibitors with the position of imidazole substitutions closer the carboxylic acid (6 and 8) 

resulted in burial of a larger hydrophobic surface area (Table 2).

Given that the TPP group minimally interacts with the protein, and assuming that the type of 

imidazole-iron coordination is similar for different analogs, we propose that the major 

contribution to binding free energy of these compounds comes from desolvation of 

hydrophobic surfaces of ligand and protein. Free energy of desolvation of hydrocarbons has 

been shown to correlate with surface area and the contribution of unit area has been reported 

to range from 20 to 47 cal/mol/Å2 [47–52]. Larger values include corrections for entropic 

contributions due to molecular size disparity [50, 51]. We calculated relative contribution of 

desolvation to binding free energy of analogs with respect to TPP-12-ISA, which buries the 

smallest area (Table 2). For TPP-6-ISA, the analog with best activity profile, we estimate 

that relative contribution of desolvation will range from −1.0 to −2.2 kcal/mol.

In vitro Radiomitigation Effects of TPP-n-ISA

We further attempted to validate the significance of the chemical/biochemical and 

computational predictions using a model of irradiation induced apoptosis in MECs [53] 

treated with TPP-n-ISAs. Two apoptosis hallmarks, i.e. PS externalization and caspase-3/7 

activation, were assessed. As demonstrated in figure 9, irradiation (10 Gy, 48 hours) induced 

robust PS externalization (in ~32% of cells) accompanied by activation of caspase-3/7 

(~6.5-fold over control cells). Both biomarkers of apoptosis were significantly suppressed 
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by all the tested TPP-ISA derivatives (5 μM, administrated 30 min after radiation exposure). 

Among these compounds, TPP-6-ISA appeared to be the most potent radiomitigator, 

resulting in the decreased number of PS-positive cells (~13%, p < 0.05) and attenuated 

capase-3/7 activation (~ 3-fold, p < 0.05).

Discussion

In addition to the well know function of mitochondria in bioenergetics, these organelles 

have also emerged as the major regulatory platform responsible for coordination of 

numerous metabolic reactions as well as cell death processes. Mitochondrial role in the 

execution of the program of intrinsic apoptosis includes the production of ROS fueling 

oxidation of cardiolipin catalyzed by cyt c [3–5]. As this oxidation occurs within the 

peroxidase complex of cyt c with CL, the latter represents a promising target for the 

discovery and design of drugs with anti-apoptotic mechanisms of action.

Under physiological conditions, cyt c is located in the intermembrane/intercristae spaces. By 

way of electrostatic interactions, cyt c bounces and shuttles electrons between respiratory 

complexes III and IV. The axial Fe-S (Met80) bond in native cyt c is not very strong and is 

located in an unstable region (“foldon”) of the protein [54]. Early during intrinsic apoptosis, 

CL undergoes massive translocation from the inner to the outer mitochondrial membrane 

thus facilitating its direct physical interactions with intermembrane-space cyt c [3]. 

Combined electrostatic and hydrophobic binding of cyt c with CL triggers conformational 

changes of cyt c with the rupture/weakening of the Fe-S-Met bond, transition of hexa-

coordinated into penta-coordinated heme iron and the appearance of high-spin state of iron 

due to the decreased d-orbital splitting [3]. This is diagnostic of a partially denatured 

“molten globule” organization of the heme-protein that is characteristic of many non-native 

cyt c states induced by anionic phospholipids, micelles, polyanions, and electrodes as well 

as guanidine hydrochloride (GuHCl), low pH, and elevated temperature [55, 56]. These re-

arrangements of cyt c in the complex with CL are associated with a very strong negative 

shift of its redox potential (by ~400 mV) resulting in its inability to act as an electron shuttle 

and switching-on its peroxidase function [57].

We hypothesized that “locking” of the heme-iron coordination bond with a strong ligand 

delivered through the hydrophobic channel into immediate proximity of the heme catalytic 

site would suppress the peroxidase activity of CL/cyt c complexes, and therefore inhibit the 

intrinsic apoptosis. Therefore, we designed and synthesized a collection of mitochondria-

targeted TPP-n-ISA derivatives with a strong Fe ligand - imidazole group - attached to 

different carbon atoms of their carbon chain. The mitochondrial targeting of TPP-ISA was 

realized by coupling ISA to a lipophilic TPP cation [6, 58, 59]. The TPP cation has a large, 

hydrophobic surface area that enables it to pass easily through phospholipid bilayers to be 

“electrophoresed” and accumulate up to several hundred folds within mitochondria, the site 

of its action.

By using a combination of absorption and EPR spectroscopies we demonstrated that TPP-n-

ISA indeed were able to potently suppress CL induced structural re-arrangements in the 

protein necessary for its action as a peroxidase. TPP-n-ISA analogues preserved the low spin 
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hexa-coordinated heme iron state in CL/cyt c complexes whereby TPP-6-ISA displayed a 

significantly more effective preservation than TPP-14-ISA. TPP-6-ISA decreased the 

electron density on the porphyrin ring more effectively than the TPP-14-ISA as suggested by 

ESEEM data. Elucidation of these intermolecular stabilization mechanisms of cyt c 

identified TPP-6-ISA as an effective inhibitor of the peroxidase function of CL/cyt c 

complexes with a significant anti-apoptotic potential realized in MECs exposed to ionizing 

irradiation.

These experimental findings were further detailed and confirmed by the computational 

analysis. All atom simulations suggested that the ISA moiety, rather than the TPP group, 

was the major contributor to the binding free energy of TPP-ISA. These hydrophobic 

interactions of TPP-n-ISA with heme iron are important in regulation of the ratios of high 

spin/low spin forms with different symmetry. Imidazole substitution closer to the carboxyl 

end of the fatty acid chain resulted in burial of a larger hydrophobic surface and produced 

derivatives that more effectively interacted with cyt c/CL complex. The higher anti-

peroxidase potency of TPP-6-ISA vs TPP-14-ISA was also supported by the computational 

analysis which revealed that TPP-6-ISA and TPP-8-ISA, with higher buried hydrophobic 

surface area, were better ligands of TOCL/cyt c when compared to TPP-12-ISA or TPP-14-

ISA. These computational interpretations are consistent with previously published EPR data 

demonstrating the importance of hydrophobic interactions in the lipid-induced modulation 

of cyt c spin states [37]. Addition of more hydrophobic lipids with longer acyl chains 

increased the content of high spin species of cyt c. On the other hand, addition of zwitter-

ionic short chain lipids such as dibutyryl PC (C4:0) and didecanoyl PC (C10:0) did not 

affect the spin state of cyt c.

Massive apoptotic cell death resulting in the disruption of essential barriers and tissue and 

organ failure has been associated with the major pathogenic mechanisms of acute injury. 

This necessitates the design and development of new anti-apoptotic drugs. Aiming at CL 

oxidation as a drug target may be particularly promising as it allows for a therapeutic 

window of several hours from the moment of exposure yet prevents the release of pro-

apoptotic factors from mitochondria into the cytosol – an event designating the point-of-no-

return in apoptosis [3–5]. Our previous work documented the validity of this approach in 

acute brain injury (Ji et al., 2012) and acute radiation injury [6]. The effectiveness of TPP-n-

ISA analogues, particularly TPP-6-ISA, as inhibitors of radiation induced programmed cell 

death may be important for the development of radiomitigative modalities. Indeed, the 

reality of intentional human exposure to ionizing radiation during radiotherapy and risks of 

unintended exposure from nuclear accidents, unavoidable occupational environments, as 

well as exposures during space exploration or potential terroristic attacks necessitates design 

and development of effective protective/mitigative modalities. This requires profound 

understanding of the mechanisms of radiation-induced damage. High doses of irradiation 

induce acute radiation syndrome associated with massive cell loss in radiosensitive organs, 

believed to be mostly due to triggering of intrinsic, mitochondria-mediated, apoptosis [60]. 

This emphasizes the importance of the identification of TPP-6-ISA as a candidate drug with 

optimized radiomitigative potency.
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Highlights

• Mitochondria-targeted imidazole-substituted stearic acids was synthesized.

• TPP-n-ISAs suppressed cardiolipin-induced structural rearrangements in 

cytochrome c.

• TPP-n-ISAs preserved the low spin hexa-coordinated heme iron state in 

cytochrome c.

• TPP-n-ISAs inhibited the peroxidase activity of cytochrome c/cardiolipin 

complex.

• TPP-6-ISA was identified as an optimized candidate anti-apoptotic drug.
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Fig. 1. 
Chemical structure of TPP-conjugated-6-imidazole-substituted stearic acid.
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Fig. 2. 
Absorption spectra of cyt c illustrating inhibition of TOCL-dependent formation of its heme 

iron high-spin form by TPP-ISA derivatives. (A) Absorption spectra of cyt c (75 μM) in the 

presence of TOCL (TOCL:cyt c, 20:1). (B) Effect of TOCL (TOCL/cyt c ratio (5:1, 10:1, 

and 20:1) on the formation of high-spin iron. For quantitative assessment of the formation of 

high- spin iron, the height of peak at ca. 620 nm was calculated by subtraction of absorbance 

reading at 675 nm from that at 620 nm. Insert - the differential absorbance spectrum created 

by subtracting the spectra of cyt c from the spectra of TPCL/cyt c complex. (C) Effect of 
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TPP-ISA on TOCL-dependent formation of high-spin form of cyt c heme iron. Spectra were 

recorded in 20 mM HEPES buffer (pH 7.4) containing 75 μM cyt c and 100 μM DTPA. Data 

presented are means ± SD (n=6). * p < 0.05 vs TOCL/cyt c ratio of 5:1, # p < 0.05 vs TPP-6-

ISA under the same experimental condition.
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Fig. 3. 
CW-EPR spectra of the heme iron signals in cyt c. Experiments were conducted at a 

temperature of 10 K. The concentration of cyt c was 500 μM and the ratio of cyt c:TPP-n-

ISA:TOCL was 1:1:20. The peaks around g ~3.07 and g ~ 2.24 correspond to a low spin 

state of the heme iron. Changes in the g values upon the addition of TPP-n-ISAs to cyt c/

TOCL complex are consistent with the ligation of His/Imidazole to heme center.
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Fig. 4. 
ESEEM spectra showing the interaction of TPP-n-ISA with cyt c. The ESEEM experiments 

were conducted at 4.2 K, using a pulse sequence of π/2-τ-π/2- T-π/2-echo with a π/2 pulse 

length of 16 ns. Note that TPP-6-ISA interacts more effectively with the heme center 

compared to TPP-14-ISA.
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Fig. 5. 
ESEEM spectra of cyt c in the presence of TOCL and TPP-n-ISA. The experiments were 

carried out at 4.2 K, using a pulse sequence of π/2-τ-π/2- T-π/2-echo with a π/2 pulse length 

of 16 ns. The ratio of cyt c: TOCL was 1:20 with a cyt c concentration of 500 μM. The ratio 

between cyt c and TPP-n-ISA was 1:1 and nine equivalents of H2O2 were added for the 

H2O2 experiments. (A) Upon the addition of H2O2 the spectral features remained the same 

for TPP-6-ISA. (B) For TPP-14-ISA, upon the addition of H2O2 the feature around 6.8 MHz 

was no longer present (dashed spectra).
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Fig. 6. 
ESEEM spectra of the cyt c/TOCL complex in the presence of TPP-6-ISA and H2O2 with a 

pulse separation of 288 ns. At longer pulse separations the low frequency features 

corresponding to imidazole coordination (0.4, 1.7 and 2.2 MHz) are clearly visible.
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Fig. 7. 
Inhibition of peroxidase activity of TOCL/cyt c complexes by TPP-n-ISA. Peroxidase 

activity was evaluated by determining the H2O2-dependent oxidation of Amplex Red. Data 

presented are means ± SD (n=6), # p < 0.05 vs cyt c alone, * p < 0.05 vs TPP-6-ISA under 

the same condition.
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Fig. 8. 
Cyt c structure and inhibitor interactions. (A) Crystal structure of cyt c is compared to the 

partially unfolded conformation used in MD simulations. Residues Asn70 to Lys88 that 

form the red loop foldon bear an open conformation, whereby Met80 is 12.5 Å away from 

its position in the crystal structure. (B) Initial conformation is displayed in surface 

representation to show binding site residues. All residues that interact with inhibitors in at 

least 20% of the simulation duration are labeled. Tyr67, Leu68, Pro71, and I75 inlay the 

binding pocket. See Table S1 for details. (C–D). Most frequently observed 6-ISA and 
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TPP-6-ISA binding modes are shown. Red loop foldon tends to close over bound inhibitors. 

In particular, Met80 and Phe82 side-chains interact closely with the inhibitors and hold them 

in position. TPP group (grey) resides outside of the binding pocket and does not have a 

significant effect on ISA binding mode. For alternate binding modes and full-length movies 

of the simulations, see supplementary figures and movies.
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Fig. 9. 
Mitigative effects of TPP-n-ISAs against irradiation induced cell death. Cells were γ-

irradiated at a dose of 10 Gy, and then incubated in the presence (added 30 min post-

irradiation) or absence of 5 μM TPP-n-ISAs for 48 hours. After that, cells were collected for 

apoptosis analysis. (A) Determination of PS externalization with flow cytometry using an 

Annexin V-FITC/PI kit. (B) Measurement of Caspase-3/7 activation using a luminescence 

Caspase-Glo 3/7 assay kit. Data are mean ± SD, n=3. * p < 0.05 vs irradiated cells without 

TPP-ISA treatment, # p < 0.05 vs TPP-14-ISA
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Table 1

Summary of simulations.

Complex Free

cyt c 40 ns × 2

6-ISA 200 ns × 2

TPP-6-ISA 200 ns × 2 100 ns

TPP-8-ISA 200 ns × 2 100 ns

TPP-10-ISA 200 ns × 2 100 ns

TPP-12-ISA 200 ns × 2 100 ns

TPP-14-ISA 200 ns × 2 100 ns
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